(866)-482-2177

sales@alphatheory.com

REQUEST A DEMO

SYSTEM REQUIREMENTS


Please note the following System Requirements. Further, please limit the number of open applications (particularly price streaming applications) while logged in to Alpha Theory™.


Recommended System Specifications
Processor: Dual Core or Quad-Core 2.4GHz or faster
RAM: 4GB+
Browser: Google Chrome 30+
Screen Resolution: 1280 x 1024 or greater
Internet Access: Business Class High-Speed


Minimum System Requirements
Processor: Intel Pentium-M 2.0Ghz or equivalent
RAM: 2GB+
Browser: Google Chrome, Mozilla Firefox, Internet Explorer 9+ (without Compatibility View), Safari
Screen Resolution: 1024 x 768 or greater
Internet Access: High-Speed

Subscribe to Alpha Theory content

Alpha Theory Blog - News and Insights

« December 2017 | Main | February 2018 »

1 posts from January 2018

January 05, 2018

2017 Year in Review

 

Alpha Theory’s product helps investment managers reduce emotion and guesswork in position sizing. The result is reduced errors and improved returns. For six consecutive years, Alpha Theory clients have outperformed their peers (see table below – we use the benchmark of Major Equity Hedge Index because 86% of Alpha Theory clients are hedge funds). Our clients have consistently outperformed their competitors, more than doubling their returns over the period.

 

Graph1

*Totals are not including 2017 data

In 2017, our average client generated 18.9% returns and, when it is released, I anticipate that we’ll beat the Hedge Index again. These results are consistent with other blog posts we’ve written highlighting our clients in 3rd party rankings: Reuters / WSJ / Novus.

 

NEW 13-F ANALYSIS

This year, we expanded our analysis through a new 13-F dataset with all publicly filing funds. The upside of using this dataset is it enables us to compare results against every reporting fund in 2017. The downside is it only includes the US equity long positions. The results indicate that once again, Alpha Theory clients outperform their peers.

The average Alpha Theory client performance in 2017 (13-F data) was 27.6% vs 19.9% for all others (3013 total funds with over 20 positions). That’s almost one full standard deviation higher (8.8% standard deviation) than the mean and has a Z-Score of 2.03 (statistically significant above the 95% confidence level).

Even more interesting was the individual performance results of our clients, one Alpha Theory client was the 2nd best performing fund in 2017 (this client thanked us more than once for our contribution to their success) and four clients landed in the top 40 performers.  We also had six of the top 100, and 10 of the top 200. Statistically, we’d anticipate less than 1% in all categories because Alpha Theory clients are less than 1% of all funds. Instead, as in previous periods, there is a concentration of Alpha Theory clients amongst the top performers.

Graph2

Simply put, Alpha Theory clients outperform their peers. The traits these firms share are discipline, intellectual honesty, and process focused. They gravitate to Alpha Theory because it is their tool kit to implement and measure that process.

 

PROCESS EQUALS PERFORMANCE

Alpha Theory clients use process to reduce the impacts from emotion and guesswork as they make position sizing decisions. Alpha Theory highlights when good ideas coincide with largest position sizes in the portfolio. This rules engine codifies a discipline that:

1. Centralizes price targets and archives them in a database

2. Provides notifications of price target updates and anomalies

3. Calculates probability-weighted returns (PWR) for assets and the portfolio as a whole.

4. Enhances returns

5. Mitigates portfolio risk 

6. Saves time

7. Adds precision and rigor to sizing process

8. Real time incorporation of market and individual asset moves into sizing decisions.

DISCIPLINED USAGE REDUCES RESEARCH SLIPPAGE

Alpha Theory’s research not only suggests that adoption of the application by itself leads to improved performance, but actual usage intensity further enhances results.

Usage intensity is determined by:

1. Percent of Positions with Research

2. Correlation with Optimal Position Size

3. Login Frequency

 

Graph3

1.Measured as the annualized ROIC where data was available, for a sample of 48 clients, 12 for each quartile

 

OPTIMAL POSITION SIZING REDUCES RESEARCH SLIPPAGE

Comparing clients’ actual versus optimal returns shows:

HIGHER TOTAL RETURNS
ROIC is 4.5% higher.

IMPROVED BATTING AVERAGE
Batting Average is 8% higher. Explanation: many of the assets that don’t have price targets or have negative PWRs are held by the fund but recommended as 0% positions by AT. Those positions underperform and allow AT’s batting average to prevail.

 Graph4

1.Measured as the average full year return for clients where full year data was available, adjusted for differences in exposure, net of trading costs

2.Before trading costs

 

ALPHA THEORY CLIENTS OUTPERFORM NON-CLIENTS
Alpha Theory clients have outperformed Major Equity Hedge Indices every year since Alpha Theory started collecting historical data. While our clients are a self-selecting cohort who believe in process and discipline; process orientation goes hand-in-hand with Alpha Theory software that serves as a disciplining mechanism to align best risk/reward ideas with rankings in the portfolio.

 Graph5

PRICE TARGETING REDUCES RESEARCH SLIPPAGE

Alpha Theory has further found that ROIC for assets with price targets is 5.6% higher than for those without price targets. Some investors chafe at price targets because they smack of “false precision.” These investors are missing the point because the key to price targets is not their absolute validity but their explicit nature which allows for objective conversation of the assumptions that went into them.  Said another way, the requirements of calculating a price target and the questions that targets foster are central to any good process.

Graph6*Long-only as many short positions are hedges and have no price targets