Please note the following System Requirements. Further, please limit the number of open applications (particularly price streaming applications) while logged in to Alpha Theory™.

Recommended System Specifications
Processor: Dual Core or Quad-Core 2.4GHz or faster
Browser: Google Chrome 30+
Screen Resolution: 1280 x 1024 or greater
Internet Access: Business Class High-Speed

Minimum System Requirements
Processor: Intel Pentium-M 2.0Ghz or equivalent
Browser: Google Chrome, Mozilla Firefox, Internet Explorer 9+ (without Compatibility View), Safari
Screen Resolution: 1024 x 768 or greater
Internet Access: High-Speed

Subscribe to Alpha Theory content

Alpha Theory Blog - News and Insights

« February 2018 | Main

2 posts from March 2018

March 12, 2018

Capital Allocators Podcast with Ted Seides: Moneyball for Managers


Learn how to enhance your investment results in this great podcast from Ted Seides and his guests, Clare Flynn Levy from Essentia Analytics and Cameron Hight from Alpha Theory.

This conversation covers the founding of these two respective businesses, the mistakes portfolio managers commonly make, the tools they employ to help managers improve, and the challenges they face in broader adoption of these modern tools. The good news is the clients of Essentia Analytics and Alpha Theory have demonstrated improvement in their results after employing these techniques. If you ask Clare and Cameron, you may develop a whole new appreciation about the potential for active management going forward.




By creating a disciplined, real-time process based on a decision algorithm with roots in actuarial science, physics, and poker, Alpha Theory takes the guessing out of position sizing and allows managers to focus on what they do best – picking stocks.

In this podcast, you will learn how Alpha Theory allows Portfolio Managers convert their implicit assumptions into an explicit decision-making process. 


To learn how this method could be applicable to your decision-making process:





March 02, 2018

Size-Based Batting - A Different Perspective on Stock Selection


How do you determine if an investor is a good stock picker? One commonly used measure is to count the number of positions that make money (winners) divided by the total number of positions. This metric is commonly called a Batting Average, analogizing stock picking with baseball hit-rates.

The problem with Batting Average is that several inconsequential positions that lose money can really bring down the total. We saw this with our clients. They have historically outperformed other funds (every year for the past six) but have a batting average, adjusted for the move in the bench, of only 51%.

We decided to take a different approach and measure the total exposure of positions that made money versus the total gross exposure of the fund. For instance, if 60% of a fund made money on an alpha-adjusted basis and the fund was 120% gross exposed, then the fund had a Sized-Based Batting Average of 50% (60/120).

Our clients had a Sized-Based Batting Average of 54% versus the non-sized based average of 51%. That means that our clients were good at selecting investments and at sizing them, but they were harming their overall returns with small losing investments.

Alpha-Adjusted Batting Average1


Screen Shot 2018-03-02 at 10.09.00 AM


In the table above, Size-Based Batting, while not perfectly consistent, is generally better from year-to-year for our clients (exceptions being 2012 and 2015).

We’ve performed other analyses that have proved this point, specifically that our clients’ positions under 1% dramatically underperform the rest of the portfolio, but Sized-Based Batting presents a compelling way to highlight the “small position” issue (see the “Concentration Manifesto” for other issues with small positions).

In our profession, it is incredibly difficult to detangle skill from luck and, as cathartic as it would just rely on returns, returns are actually negatively correlated with next year’s returns for most funds (i.e. funds that outperform in year N have a higher likelihood underperforming in year N+1 – there are multiple research sources that analyze mean reversion in funds, here is one).

Sized-Based Batting is a nice addition to the allocator’s tool bag for finding managers with stock picking skill. In much the same way, managers should use Sized-Based Batting as a way to highlight their strengths and compare it to traditional Batting Average as a way to potentially point out weaknesses.


1 S&P 500 for US securities and MSCI WEI for non-US securities

2 Why is “All Time” so low compared to each year? Reason #1: There are many more observations in the more recent years which skew the overall results to be more similar to the more recent years. Reason #2: There were many assets that were losers over “All Time” while being winners for multiple years (small win in 2015, a small win in 2016, big loss in 2017 = 2 winning period vs 1 losing but a loser in the All-Time bucket).