(866)-482-2177

sales@alphatheory.com

REQUEST A DEMO

SYSTEM REQUIREMENTS


Please note the following System Requirements. Further, please limit the number of open applications (particularly price streaming applications) while logged in to Alpha Theory™.


Recommended System Specifications
Processor: Dual Core or Quad-Core 2.4GHz or faster
RAM: 4GB+
Browser: Google Chrome 30+
Screen Resolution: 1280 x 1024 or greater
Internet Access: Business Class High-Speed


Minimum System Requirements
Processor: Intel Pentium-M 2.0Ghz or equivalent
RAM: 2GB+
Browser: Google Chrome, Mozilla Firefox, Internet Explorer 9+ (without Compatibility View), Safari
Screen Resolution: 1024 x 768 or greater
Internet Access: High-Speed

Subscribe to Alpha Theory content

Alpha Theory Blog - News and Insights

« Why Price Targets are Broken and an Easy Method to Fix Them | Main | Increasing the Probability of Success - Part 2 »

May 1, 2019

Increasing the Probability of Success - Part 1

 

I was discussing with a new client how analysts should approach probabilities. Probabilities are used in calculating probability-weighted returns by multiplying them by the client’s scenarios of price forecasts to come up with a probability-weighted return.

 

The probability piece is the most subjective part of the probability-weighted return (see our “False Precision” blog post that discusses why it is important to set probabilities), so we came up with several approaches to see what fit best for their firm. I thought I’d share them with anyone that may be struggling with probabilities:

 

1. Fixed Probabilities (Distribution)

Analysts come up with price targets that match the part of the forecast distribution associated with the probabilities. In this example, all positions have a “fixed” 20%/60%/20% probability framework. The goal is to come up with price targets that match those buckets (i.e. what is the 20% risk price target?).

Probability of Success-1

 

This method pulls price targets associated that reflect the probability-weighted outcomes associated with a broad range of outcomes associated with different probability “buckets”. An analyst would iterate the assumptions in their financial model to estimate the extreme outcomes (two 20% probability buckets at the end) and the higher probability outcomes (60% probability bucket in the middle). The result is a price target that blends the possible outcomes in each bucket by their associated probability. Another way to think of this is a cumulative probability distribution.

Normal CDF

 

For example, the analyst may associate-5% sales growth and 10% EBITDA margins as the 20% cumulative probability outcome, 25% sales growth and 40% EBITDA margins as the 80% cumulative probability outcome, and 60% growth and 55% margins as the 99% cumulative probability. There would be many other points in between (represented by the green dots) where the analyst would apply different assumptions in their model.

 

The benefits of this method are that the probabilities are fixed and require no subjective assessment. This method also allows for highly-sensitive models with extreme outcomes to be reflected in the resultant probability-weighted return. The downside of this method is that it is time-intensive and allows no flexibility in the probabilities.

 

Comments